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A weakly non-linear oscillatory system with distributed parameters is investigated. An asymptotic method of consu'ucting a solution, 
which describes the oscillatory motions of the single-mode (single-frequency) approximation, which is usually implemented in 
practical problems, is described and justified. Constructive suff~ent conditions are formulated and the closeness of the approximate 
single-frequency solution to the exact solution in an asymptotically long time interval is proved. Poss~le extensions of the structure 
of the perturbing functions are considered and the case of the fmite-mode approximation is investigated. Solutions of specific 
problems, which are of practical interest, are constructed to illustrate the effectiveness of the single-frequency approximation 
method. © 1999 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a weakly non-linear oscillatory system, described by a hyperbolic-type perturbed equation with 
homogeneous boundary conditions of the third kind 

iifu"+vl(x,u,u',iO, ufu(x,t), O < x < l  

%u'(0, t)- ~oU(0,t) = 0, cx,u'(l, t) + 13~u(L t) = 0 

CXo,,~0, l~oa~0, OCo,~+~o,,=l, t~0 

(1.1) 

(1.2) 

The dot denotes a derivative with respect to dimensionless time t, and the prime denotes the 
normalized space coordinatex. The parameter ~, 0 ~< ~ ~< r.0 (r.0 "~ 1) represents the effect of non-linear 
perturbing factors, described by the function f of fairly general form. The boundary conditions of the 
third kind (1.2) with normalized coefficients or0,1, P0,1 take into account the flexibility with which 
the elastic system is attached at its ends (when ~,1 > 0). In the limiting cases I~0,1 = 1 (o.0,1 = 1) or 
130,1 = 0 (130,1 = 0) ( ~ a  = 1) we have boundary conditions of the first or second kinds at one or both 
ends. 

For the oscillatory system described by boundary-value problem (1.1), (1.2), we have the following 
Cauchy problem with respect to the time t 

u(x,O)=h(x), fi(x,0)=g(x), 0 < x < l  (1.3) 

where the functions h(x) and g(x) define the distributions of the displacements u and the velocities h at 
the initial instant of time t = 0. Note that system (1.1), (1.2) is autonomous, i.e. it does not contain the 
time explicitly. In what follows, the functions f, h and g are assumed to be sufficiently smooth and such 
that a strong (physical) solution u(x, t, r.) of problem (1.1)-(1.3) exists (the functions u, u' and h are 
square integrable with respect to x) in an asymptotically long time interval t - ~-1. 

When there are no perturbations (6 = 0) we have a classical initial-boundary-value problem with 
boundary conditions of the third kind. This problem has been investigated fairly fully in courses on 
mathematical physics [1-3]. In the general case, its solution Uo(X, t) is an almost periodic function of 
time with a denumerable basis {Vn} of incommensurable frequencies vn. This solution can be represented 
in the form of a Fourier series in an orthonormal system of functions (basis) (Xn(x)} 
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uo(x.t)= ~. x,(x)e,(t)=-(X(x).O(t)). X,(x)= z,(x) 
,--, H 

2[, (x) = Po sin v,x + ot0v n cos V,x, 

e.(t) = h. cos v.t + (g, / v.)sin v,t 

0 

(1.4) 

V, = Arg[(~ol] I - v2OtoOq)sin v + (ao131 + ~oOq)vcos v] > 0 
v 

I I 

h, = (h.X,) m.f h(x)X,(x)dx, g, = (g.X,) ~ f.g(x)X,(x)dx 
0 0 

The properties of the convergence of the series for u0(1.4) and the derivatives are determined by the 
rate at which the coefficients h, and g, decrease as n ~ oo. 

It follows from Eq. (1.4) for the eigenfrequencies v, that v, ~ nn when o~ctl > 0 and v, ---> n (n + 
I/2) when a0ctl = 0, ~131 + l~0al > 0. This property of the spectrum leads to extremely complex 
behaviour of the function f with time, after substituting the unperturbed solution u0(x, t) and its 
derivatives into it. The problem of the existence of a uniform mean with respect to t and the absence 
of"internal" resonance and "small denominators" is the main difficulty when using perturbation theory. 
The use of the standard formal approach to constructing an approximate solution (see [4] and the 
bibliography) involves, in general, satisfying a number of limiting non-constructive conditions which, 
obviously, can only be done for linear functionsf. The problem of the convergence of the Fourier series, 
representing the approximate formal solution and its derivatives, also arises here. The lack of a due 
basis gives rise to certain difficulties for the reliable use of the proposed solution algorithms as well as 
doubts in estimating the reliability of the results obtained when investigating specific oscillatory 
systems. 

A more promising theoretical approach to investigating complex multifrequency systems is the 
asymptotic singie-frequency approximation method [4-7] and the related methods of averaging 
(separation of motions) [4-8] and local integral manifolds [4-6, 9]. In applied investigations it has been 
established that, in linear systems with distributed parameters, single-frequency oscillations of the 
fundamental (lowest) mode occur [10]. Higher-mode oscillations are not excited in practice and, 
moreover, they decay very rapidly. These observations require a theoretical basis using constructive 
sufficient conditions. 

2. I N V E S T I G A T I O N  OF AN AUXILIARY D E N U M E R A B L E  SYSTEM 

Our calculations so far have mainly been of an auxiliary formal nature. They hold when the 
requirements imposed on the structure and smoothness of the functions f, h and g are extremely simple. 

We will seek a solution of the perturbed problem (1.1)-(1.3) in the form of a Fourier series in an 
orthonormal complete system of functions {X,(x)} 

u(x,t,~) = ~, X,(x)e,(t,~) = (X,e) (2.1) 
.--I 

in which the functions X,(x) are defined by (1.4) while 0n are unknown generalized coordinates of the 
system. After substituting (2.1) into Eq. (1.1), using the standard procedure for determining the required 
variables 0, we obtain the denumerable Cauchy problem [4] 

~,+v,~e,=v,(o.e). O,(O.~)=h,. e,(o.~)=g, 

o=(e~.02 ..... e, .... ), o=(e~,e2 ..... e. .... ) (2.2) 

f,(O,6) = (f(x,(X(x),e), (X'(x),O), (X(x),e)), X,(x)) 

Instead of On, On we will introduce slow (osculating) variables an, bn which are similar to the Van der 
Pol variables [6]. We obtain a standard denumerable Cauchy problem (in the Krylov-Bogolyubov sense) 
o f  the form 
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~i. = v~ F~ (a, b, cp)cos~p., /~ __ = -~-Fn(a,b, cp)sincp., n - 1,2 .... 

Fn(a,b,~p)  m f , ( O , 0 ) ,  qp = (tpl,cp2 . . . . .  9 ,  . . . .  ) (2 .3 )  

0 n = a n sin 9 .  + b n c o s  ~ ,  0n = v n (a  n c o s  q ) n  - b.  sin q ~ )  

9n=v , t ,  an(O,~.)=a°=g, l v , ,  bn(O,c.)=b~°=h, 

Note that the functions Fn contain as the arguments the expressions Vmam and vmbm and, generally 
speaking, do not satisfy the Lipsehitz condition with respect to a and b, since Vm - m ~ oo. The right- 
hand sides of Eqs (2.3) will be extremely complex almost periodic functions of t with a denumerable 
basis of frequencies {vn} (1.4). This behaviour of the frequencies of the partial oscillations v,, as 
n ~ ~ leads to the well-known difficulties mentioned in Section 1, related to the problem of "small 
denominators", which are increased by the unlimited dimension of system (2.3). The existence of a 
uniform mean with respect to t of these functions and the properties of smoothness of the means of 
both the functions a and b are the main difficulties in analysing the continuous non-linear function f 
of u, u', fiin the general case. Moreover, the equations for all the components an and bn will be coupled, 
which makes their analysis quite impossible. These complications make it difficult to use the formal 
scheme of the method of averaging, the method of"tnmcation" of the denumerable system and a number 
of other results [4]. 

3. C O N S T R U C T I O N  OF THE S I N G L E - F R E Q U E N C Y  A P P R O X I M A T I O N  

Further, as in the single-frequency (single-mode) Krylov-Bogolyubov-Mitropol'skii approximation 
method, we will assume that the following constructively verifiable non-formal conditions are satisfied 
[4-7, 101. 

1. The initial distributions of the displacements h(x) and the velocities g(x) (1.3) satisfy the necessary 
condition for single-frequency oscillations 

h12+g~>0, h~+g~--0,  n--2,3 .... (3.1) 

This means that a°n = b ° -- 0, n ~> 2, i.e. the initial distribution is proportional to the first mode of 
the oscillations of the unperturbed system (1.1). In a relatively short time interval t - 1, the motion~of 
system (1.1)-(1.3), (3.1) will be close toX](x)Ol(t), since al = a ° + O(e), bl = b ° + O(e), an, bn = On(e) 

1 (see (1.4) and (2.3)). In an asymptotically long time interval t - e- this state of motion breaks down 
and, in the general case, a considerable change occurs in all the osculating variables an, bn, n >>- 1. The 
oscillations become multifrequency oscillations, which again leads to the above-mentioned basic 
difficulties in their asymptotic analysis and approximate calculation. 

2. We will narrow the class of perturbing functions of system (1.1) and consider the case where the 
function f can be approximated by a polynomial of finite degree M of the variables u, u', t~ in a certain 
domain D 

I J g 
f (x ,u,u ' ,~)= ~, ~, ~, f#k(x)ui(u')Jfi k, I + J + K = M  (3.2) 

i=0 j s 0  k=0 

It follows from (3.2). that after, substituting, the. function u.(1)(x, al,. bl,. ~01) and its derivatives, into 
f, the function f0) obtained wdl be a trigonometric polynomml c0ntmmng the frequencies my1 (m = 
0, 1 , . . . , M )  

fo)(x, al,b],qh) = f (x ,  uo),u~l),~t)), ~l = v :  (3.3) 

uo) = X I (x)(a I sin qh + bj c o s g l  ), u~l) = ~utl ) I ~x, uo) = ~uo) I ~t 

The analytical properties of the function J(1) (3.3) and its mean can be established by elementary 
methods. 

3. We will now introduce a "frequency" condition, imposed on the quantity vn, i.e. on the coefficients 
a0,], 130,i, which define the eigenfrequencies of the unperturbed system from (1.4). We will assume 
that 
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Imvl-vnl ;~T>0,  m=0,1 ..... M, n = 2 , 3  .... (3.4) 

Then, assuming On = (~ -'- 0 for n ~> 2 infl,f2 . . . . .  fn . . . . .  (2.2), we obtain expressions for Fn, which 
depend on al and bl and are periodic in t with a frequency basis {my1}, m = 0, 1 . . . . .  M. As a result, 
the right-hand sides of the system allow of uniform averaging over t when an = bn = 0, n ~> 2, and by 
(3.4) we have 

a~ =v'~!Ff(al,bl), b~ =-v'(IFjS(al,bl), a'n =b~ =O, n;~ 2 

al(O)=a °, b,(O)=b °, an(O)=bn(O)=O (3.5) 
,,. I 

Ff'~(aj,bt)=-~ ! Ft,)(a,,bl,qh nqh d91, F~'" -0 

In (3.5) and below the dot over a quantity denotes the derivative with respect to the slow time ~ = et; 
the expressions for F(.) denote that we have substituted the quantityan = bn = 0,n ~> 2 into the functions 
F. (2.3). We will assume that the solution a*1(~), b*1(x) of the averaged system of the first approximation 
(3.5) and the corresponding single-frequency approximation of the required solution u0) are known 
by (2.1), (2.3) and (3.1) 

a,=a~('c,a°,b°), b~=b~(x,a°,b°), a.=b.-O, n>2 (3.6) 

uO)(x,~,tpj)= X l ( x ) ( a  , ('¢)slntp! +bl  ('c) cos (pl ), 0 ~  < t ~ / . , g - I ,  Lfconst 

4. We will assume that the values of the function u~l) (3.6) and its derivatives u~l'), fi(~), see (3.3), belong 
to the domain DO) C D together with a small neighbourhood; in addition, a Lipschitz constant ~.(D) 
exists such that 

If(x, ufl),u~j),i~O))-f(x,u,u',d)l~ Z(Iu0)- ul+lu~,) - u'l+lfi(l ) -~I), (3.7) 

(u,u',iOE D, (uo),ut'~,i%)~ D 

5. We will assume that the function fts)(X, al, bl, ~01) (3.3) with respect to the variable x belongs to a 
fairly high Steklov class of smoothness k [3]. This condition corresponds to the absence of perturbations 
of boundary conditions (1.2) and to a rapid decrease infn --* 0, n --+ oo. 

In fact, suppose that, whenx = 0, I, the relations/0)/Sf0)/& ..... i~-If/8~ -l = 0 hold identically with respect 
to tpl, and the derivative 8/'f0)//~. is piecewise-continuous. Then {orf.(qh) we obtain, by integration by parts, the 
estimatef~ = O(v.-k), i.e.f. -- n -k uniformly with respect to ~Pl. 

4. AN ESTIMATE OF THE ACCURACY OF 
THE S I N G L E - F R E Q U E N C Y  APPROXIMATION 

To validate the single-frequency approximation method, as it applies to problem (1.1)-(1.3), which 
satisfies the conditions listed in Section 3, we will consider the differences 

8u=u-uo), 5u'=u-uo), ~=d-/(O (4.1) 

Here u*.. is the solution of the first approximation, known from (3.6). The function u = u(x, t, ~) is 
[I . . . . . . . .  

the unkn~,n solutlon of the original mmal-boundary-value problem, whlch can be represented m the 
form of an integral equation using Green's function G of the unperturbed problem 

t 1 
u = uO(x,t)+ E S ~ G(x,y,t- s)f(y,u,u',u)dyds 

0 0 

u ° (x, t) = Xl (x)(a ° sin qh +/h ° cos qh ), qh =Vlt 

G(x, y, t) = i Xn (x)Xn (Y) sin v~t 
n=l Vn 

(4.2) 
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By means of identity transformations, we can reduce the differences (4.1), using (4.2), to a form which 
is convenient for applying Gronwall's lemma 

t I 

0 0 

t I 

AuO) • u ° (x,t) + e I J Gfx, y, t - s)ffy,  U~n ), u~:), fi~j))dyds. - u~t ) (x, x, (p,) (4.3) 
O 0  

~ ( I )  = ' " * *" "*  f (y ,u ,u  , u ) -  f ( y ,  uo)(y,O, Wl),uO)(y,O,¥1),uO)(y,O,¥1)) 

~ ) u ' = ~ l ~ ,  8i~=i)tulBt, O=ts ,  yu=vns  

For. the known ftmetion Au:(1) and. .its derivatives, with respect to x and t, by virtue of condition 5 in 
Seeuon 3, we have the following limit voth respect to the root mean-square norm L2(x) 

0 . , . <  (4.4) 

Suppose w = w(x, t) is the derivative of the function of Lz(x) (0 ~< x ~< 1 and t is a parameter); then 
we have the following limit for it implied by the form of Green's function G (4.2) 

[~t! G(x'Y't-s)'(Y'S)aYl~- clwtl~ 
(4.5) 

We will estimate the errors 5u, 8u', 5fi with respect to the norm in L2(x ) using Gronwall's lemma. 
Taking property (3.7) and the limits (4.4) and (4.5) into account we obtain 

+M. U=const (4.6) 

N=~,(A+B+C) ,  O ~ t ~ L g  -I, L=const  

The following limits of order e for 5u and its derivatives follow from (4.6) over an asymptotically 
long time interval 

- -  (4.7) 

I~'[l~ ~ cue °rr, It~U~ ~ cUe °rr, o ~ t ~ l~  -~ 

Hence, by (4.7) for 8u we also have a stronger uniform estimate with respect to x. 

5. POSSIBLE E X T E N S I O N S  OF THE S I N G L E - F R E Q U E N C Y  A P P R O A C H  

Results similar to the above can be obtained for perturbations of a more general form and with more 
general assumptions regarding the generating and required solutions. 

1. The ftmetion f e a n  be represented by a finite trigonometric polynomial in t 

P 

f = ~, [ff,(x,u,u',iOsinflpt+f~,(x,u,u',iOeoSflpt], lip ~ 0 
p = l  

(5.1) 

In (5.1) the funct ions~ andffp must have the structure of polynomials of type (3.2) in the arguments 
u, u' and ft. It is also assumed that the set of frequencies {D~} of the external perturbations must satisfy 
the separability condition, similar to (3.4), namely 
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Impv I + ~ p - V n l ~  ¥>0 ,  mp =0,1 ..... Mp, p = l  .....  P (5.2) 

Here, as follows from (5.2), the conditions of resonance between the frequencies mpV 1 and D.p can 
be satisfied (with an error O(e)) or not satisfied, i.e. I m p v l - ~  I -- O(~) or I mpv~-~  I ~> 11 > 0, where 
m t, = 1 . . . . .  Mp + 1 ,p  = 1 , . . . , P .  

2. When more restrictive requirements are imposed on the smoothness property of the exciting 
function of the form (5.1) the structure of its coefficients can be generalized as follows [4]: 

~ ¢ ; , C  $ , C  • n • • • • ~ '  = f~ (x,u,u ,u ,u,u,u ) (5.3) 

$vC t r t  I I t  The coefficientsf~ are functions of the polynomial type (3.2) in the argument u, u ,  u , u, u ,  u of 
degree Me" It is assumed that the "single-frequency" condition (5.2) is satisfied, and also the assumption 
about the presence or absence of the external resonance. Note that terms containing u' and u" (for 
example, of the form u'2u '' [10]), correspond to the geometrical non-linearity, u" corresponds to the 
internal dissipation, fi corresponds to the external dissipation, while terms containing u may be due to 
the external elastic medium. A generalization of the structure of the function f (5.3) is of considerable 
interest from the applied point of view (see Section 7). 

3. The single-frequency condition can be extended to the case where several lower modes of oscillations 
are excited, whereas subsequent modes satisfy the frequency separability condition of the form (5.2). 
The limiting conditions on the initial distributions h(x) and g(x) (1.3) have the form of relations which 
generalize (3.1) 

hq2+gq2>O, q = l  ..... Q, 2 2 hn + gn = On (c2), n ~> Q + I (5.4) 

The system of the first approximation is of the order of 2Q and extends the equations of the single- 
frequency approximation (3.5); taking (5.4) into account we will represent the Cauchy problem in the 
form 

i~q = VqI F,~ (at ..... ao, b, ..... bQ), [~ q = - v ~ '  FqS(a, ..... a a, b, ..... bQ) (5.5) 

_ 0 a q ( O ) - a q = g q V q  I, b lc(O)=b°=hq,  q = l  ..... Q, an=bn=-O, n ~ Q + l  

The .averaged functions F c's (5.5) are obtained by substituting the expressions for 0q, 0q (2.3) into 
fn(t, 0, 0) with an = bn = 0 (n >~ Q + 1) and averaging over the explicitly occurring argument t. It is 
assumed that the functions Fn cos tOn, Fn sin tOn (n >I Q + 1) have a zero mean uniformly with respect 

c,s tO aq and b= Fn - 0; hence, in the first approximation it follows that an = bn ~ 0 (see (5.5)). The 
corresponding frequency condition, which generalizes (5.2), can be represented in the form 

mt, q V q + ~ p - V  n y>O, q = l  ..... Q, n ~ Q + l  

Q 
mpq =0,+1 ..... :t:Mp, ~ l m ~  I~Mp, p = l  ..... P 

q = i  

(5.6) 

As in Section 1, the resonance relation between the frequencies m m v  q and can be satisfied or 
not. The solution of the Q-frequency approximation with error O(c) for t - e-l, according to 
representation (2.1) and on the basis of the constructions in Section 4, will be the function 

Q 
uCo~(x,t, x) = ~ Xq(x)(a~(~)sin ~q + b~('c)cosq~q) (5.7) 

q=l 

where a~(x), b~(x) (q = 1 . . . .  , Q) is the solution of Cauchy problem (5.5). 
4. The approach described above to the construction of an approximate solution can also be extended 

to the case of a system with slowly varying parameters [4]: f = f(x,  t, x, u, u', iz . . . .  ). The  use of the 
algorithm for constructing an approximate solution and the check of the conditions are considerably 
simplified whenf i s  linear in u, u', fi . . . .  (see Section 6.1). 

5. As in the case of an equation of the form (1.1), we can similarly consider the problem of the Q- 
fxequency approximation for the more general equation 
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/i = u"  - x2u + ¢ ( x ,  t, x, u, u', u,. . .)  (5 .8)  

in which the term x2u takes into account the effect of the external elastic medium. The presence of this 
term in problem (5.8), (1.2) somewhat changes the frequency v~ of the natural oscillations of the 
unperturbed system, but their asymptotic form as n -~ oo remains as before (see Section 1). This confirms 
the fact that the problem of internal resonance and of "small denominators" remains, and additional 
serioas limitations on the structure of the function f and the frequency Vn, similar to conditions (3.2), 
(5.1) and (5.6), are required. 

6. With the corresponding requirements on the behaviour of the spectrum {vn }, the method described 
in Section 2 can be used for an approximate finite-frequency analysis of the considerably inhomogeneous 
weakly non-linear system described by the initial-boundary-value problem of the form 

~x)/i = (p(x)u')' - r(x)u + e / (x ,  t, "c, u, u', i*, ...) 

ot0P(0)u'(0, t) - I~oU(0, t) = -~¢0 (t, 'C, u(0, t), u'(0, t),...) 

iX I p(I)u'(1, t) + ~1 u(l, t) = e¢I (t, X, u(l, t), u'(l, t),...) 

u(x,O)=h(x), ,',(x,O)=g(x), 0 < x < l  

p(x)~ Po > O, p(x)~ > Po > O, r(x)>~ 0 

(5.9) 

Here p(x) is the linear density, p(x) is the stiffness per unit length, r(x) is the coefficient of elasticity 
of the external medium and O0,1 are certain functions of polynomial structure, similar tof. For highly 
accurate calculations of the natural frequencies and forms of the oscillations of the unperturbed system 
(5.9) one can use well-developed effective numerical-analytic methods of accelerated convergence 
[11, 121 . 

It should be noted that the system of equations of the type (2.2) for generalized coordinates 
On = 0n(t, 6) in this case takes into account small non-linear perturbations of the boundary 
conditions 

(5.1o) 
pO) X~(l)O;(t,~,o,6)- ~ o )  x'(o)o~(t, ~,o,o) 

v. po 
The functions O~,1 in (5.10) denote that the expressions for u(x, t) u(x, t.) (and their derivatives) 

whenx = 0, 1 can be represented in the form (2.1): (X(0), 0), (X(1), 0), (X(0), 0), (X1), 0) (and similarly 
for the derivatives u', u", t~',/?', ). Note also that when 130 = 0 (a0 = 1) or (and) 131 = 0 (al = 1) in the 
expressions for q', (5.10) the transformations 09(0)/130) X'n(0 ) = X,(O)/ao or (and) (p(1)/131) X'~(1) = 
-Xn(1)[a 1 are carried out, which enable the singularities to be eliminated. 

It follows from the expression for qs n (5.10) that in the general case, condition 5* in Section 3 breaks 
down, since ~F n - vn - n. Hence, for rapid convergence of the Fourier series it is necessary to satisfy 
the smoothness condition 00,1 - 0. Hence, the requirement for the boundary conditions to be linear 
and homogeneous is essential in order to validate the convergence of the series and the smallness of 
the error of the solution and of its derivatives 

7. In addition to the case of a scalar variable u we can consider the more general situation of a vector 
function u = (ul, u2 . . . . .  Us), each of the components of which is described by an initial-boundary- 
value problem of the form (5.9), (1.2) and (5.5), and the relation between the components is provided 
by the perturbations of f  and O0.1 (for example, when investigating three-dimensional non-linear vibration 
of a string [10], see Section 7). 

6. PERTURBATIONS OF SPECIAL FORM 

We will describe the finite-mode approximation method in some special cases, which enable an 
approximate solution to be constructed completely. 

6.1. A linear perturbation. Consider problem (5.9), assuming the function f to be linear with respect 
to the unknown u and its derivatives O0.1 --- 0. We have the following expression fo r f  
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f = F(x, t, ~) + A(x, x)u + a(x, x)u" + C(x, x)u'" + 
(6.1) 

+E(x, X)d + R(x, X)fi' + H(x,'Ou'" 
We will construct the solution u(x, t, ~) in the form of series (2.1) using the method described in Section 

2. Suppose vn, Xn(x) is the known solution of the unperturbed boundary-value problem for eigenvalues 
and functions [11, 12] 

(p(x)X')" + (Xp(x)-  r(x))X = O, 0 < x < 1 
(6.2) 

Otop(O)X'(O) - I~oX(O) = o, a t p ( l ) x ' o )  + 13~ x(1)  = o 

where {Xn(x)} is a system of eigenfunctions, orthonormalized with weight p(x). Then, using (2.2) we 
obtain the expressions 

fa(t.'¢.O,O) = Fa(t. l :)+ ~_,(Um(1;)O= + Vm(1;)O,.) 
m=l 

I 
U m (x) = ~ X. (x)(A(x, x)X,, (x) + B(x,'OX~, (x) + C(x, x)X~,'(x))dx (6.3) 

o 

I 
• + V,m ('c) = I X. (x)(E(x, xIX m (x) + R(x,'C)X= (x) H(x, x)X~.'(x))dx 

o 

We now substitute the expressions for On, On intofn (6.3) using (2.3); we obtain a denumerable system 
of equations in the osculating variables a.  and b n. Averaging over the explicitly occurring fast time t, 
we obtain a formal denumerable system of the first approximation in the slow time 

o 
d .  = I/2 Vn. ( ' t )a .  + ~v;=Un.(~:)b. + v~lFC(l:), a.(0) = a n 

(6.4) 
b,, = -  ½ v;'U,,,,('Oa,, + ½ V,,,,('Ob,, - v~F,[( 'O, b,,(O) = b ° 

. l T COS V nt  ~ 
F~.'s(x) = hm --IF.(t ,x~! nsinvnt~dt,,  n = l , 2  .... 

T~ml 0 

Note that Eqs (6.4) have a certain structure and are uncorrelated for different values of n. The 
coefficients -1/2V= characterize the partial dissipation, while 1/2v~1Unn characterize the additional effect 
of elasticity. We can obtain a complete analytic solution of the Cauchy problem in the form of quadratures 
of the unknown functions 

~ n l ~ FC( O ) a° lexp,,< )÷--JnCaJ ]oxpa,,,C,,o)ao 
! b~C,OU bOU V, ,o U- F,:(o)ll , 

(6.5) 
| "g 

~Vn 0 

AX.,,('~,o) = X, , ( ' t ) -  :g,(o), Ay,,(x,o) = ¥, , ( . t ) -  y , ( o )  

Here 1-I(~) is the 2 x 2 matrix of rotation by an angle x,. The formal solution of the first approximation 
u(1 (x, t, "c) is obtained after substituting the slow functions a*(x), b,~(x) into the expression for On and ) 
then into (2.1). 

We will require that the Fourier coefficients of the initial distributions for the displacements h, = 
(h, Xn)p = 0 and the velocities gn = (g, Xn)p = 0 and, in addition, F ~ ( x )  ffi 0 when n I> Q + 1. 
Then, when there is a sufficiently rapid decrease in the coefficients U. (x), V. (x) when n ~ oo for all .nq nq 
q = 1, 2 . . . . .  Q, I x I ~< L, we obtain the non-formal finite-mode solution 

u(o)(x,t,'O = t Xq(x)(a~(x)sin vqt + bq(x)cos vet) (6.6) 
qffil 



Single-frequency oscillations of non-linear systems with distributed parameters 695 

The coefficient Unq(X), V. (x) will decrease at a rate (kvkn _-" n-* if the functions A, B, C, E, R and H 
possess smooth derwatives with respect to x up to the 1)th order inclusive, which vanish when 
x = 0 and x = 1, while the kth derivative is piecewise-continuous [3] (see condition 5 of Section 3). 

6.2• A quasi-conservative perturbation. We will assume that the function f does not contain time and 
the derivative u, ~', fi" explicitly, i.e. it has the form of a polynomial of degree M in u, u', u". Suppose 
also that the conditions of the single-frequency approximation (3.1) and (3.4) are satisfied. Then, 
the averaged equations for al and bin, by (3.5), have, in the slow time x, the form of a time-varying 
system 

,,ij = v(J F~j (,c, al,bt), bz =_v( t  Fl,(,[,at,bt), a, ,b =_ O, n>~ 2 

1 2 ,  It cosq~ I I 
F:l"s('c,a,,b,)=.-~x ! F~t)(x,a. sinq), +b. cos(Pit sincp I .d(PJ (6.7 / 

I 

61)('c,O,) = ] f(x.'c, x, (x)O,. Xf(x)O. Xf (x)O )Xl (x)ax 
0 

Note the structural property of system (6.7), which enables the equations to be completely, inte~ated. 
M ~ ~ ultiplying the first equation by am and the second by ba and adding them, we obtain (a 1 + bin) = 0, 
i.e. the amplitude of the first mode rm = (a] + b2a) la -- const and is determined by the initial values a ° 
+ bOa. We will represent the required functions am and bl in the form al -- rl cos q], bm= rl sin ~1. 
Differentiating with respect to x and using (6.7) we obtain the following expression for the unknown 
phase ~1 

¥ , ( x ) = ¥ o _  Fj'(a, fi,0)da, cosy  ° = a--/0-z°, s in¥  °-b°--  (6.8) 
rj r I 

Hence, in the first sin~,le-mode approximation, the amplitude of the oscillations r~ and the energy 
2 2 2 _,~ 1 1/2(vm0m + 0m) = 1/2V2:m are conserved with an error O(c) in a time interval t - ~-. The phase of the 

oscillations is found from (6.8); we finally obtain 01 = rl sin (vmt + ~/l(X)). 

7. T H R E E - D I M E N S I O N A L  VIBRATION OF A N O N - U N I F O R M  STRING 

We will consider the three-dimensional non-linear vibration of a nonuniform string with fixed ends. 
We will take into account the extensibility of the thread, and also the forces of linear dissipation and 
distributed forces applied from the external medium. We will derive the equations and analyse the forced 
steady vibration by analogy with the case of a uniform string [10, 13, 14]• Taking into account the last 
terms of the expansion in the expression for the potential energy of elastic deformation and the 
extensibility, we obtain an initial-boundary-value problem for the two-dimensional vector with boundary 
conditions of the first kind 

p(x)ii = Tu"- K(x)ti + ~ (P(x)G3u '41 ~')' + O(x, t), 

u(0,t) = u(l,t) -- 0, u(x,0) = h(x), ti(x,0) = g(x) 

0 < x < l ,  t~>0 
(7.1) 

Here l is the length, p(x) = dS(x) is the linear density of the string, d is the volume density, S(x) is 
the cross-section area, and T is the tensile force of the thread; these characteristics correspond to the 
undeformed state. Further, P(x) = ES(x) - T, where E is Young's modulus, • is the distributed external 
force, periodic with respect to t, and K(x) is the coefficient of external linear friction per unit length. 
The vector u describes the displacements of a point on the string in the yz plane, orthogonal to its 
undeformed state; the ends of the string are rigidly clamped. The quantity u '4 in (7.1) is defined in the 
usual way: u '4 --- 0 ,'2 + z'2)2; the derivative with respect to the vector u' is also understood in the usual 
sense. Note that the linear density depends on the value of the deformations u', due to the change in 
the length of the string. However, because of the strong inequality ES >> T, which holds for actual 
materials (usually ES/T - 102-103), this change can be neglected and, moreover, the quantity T can 
be dropped in the expression for P(x). 
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Suppose So is the characteristic value of S(x), where S/So - 1 for all 0 < x < l; u0 is the maximum 
displacement u(x, t), i.e. I u I <~ u0. We will introduce dimensionless variables, taking the quantity I as 
the unit of length and the quantity v~ -a as the unit of time, where v2. = T(12dSo) -1. We will denote by 
K0 the maximum value of K(x), and by ~0 the maximum of I ~ I with respect to x, t and we will assume 
that the corresponding perturbing terms, namely, the geometrical non-linearity, the dissipation and the 
external force, are relatively small [10, 13]. Then, system (7.1) can be reduced to a form which enables 
us to use the asymptotic approach. For clarity we will represent the equations of the three-dimensional 
vibration in coordinate form, apart from terms O(J)  

r(x)• = y'" + (£ 12)[r(x)(y "3 + y'z "2)]" - £×(x)~ + £~.(x, t) 

r(x)~ = z'" + (£ / 2)[r(x)(y'2z" + z "3)]" - £x(x)~ + £F z (x, t) (7.2) 

0 < x < l ,  0<e ,~ l ,  r (x )=S(x) /S  o, (ESolT)(uo/ l)2=£ 

£x(x)--- K(x)(v.dSo) -I, £F(x,t) --- ~(x,t)12(Tuo) -I 

The boundary conditions at x = 0, 1 have the form (7.1), while the initial distributions of h and g are 
reduced to dimensionless variables. 

We will assume that the boundary-value problems for Eqs (7.2) when e = 0 can be fairly completely 
investigated, i.e. the solution of the Sturm-LiouviUe problem of type (6.2) is known 

X"+Z.r(x)X=O, X(O)=X(1)=O, {X,.}, {X.(x)} 

Here Ln are the eigenvalues and Xn(x) are eigenfunctions, orthonormalized with weight r(x). This 
solution can be effectively constructed using the method of accelerated (quadratic) convergence [11, 
12]. Using the procedure employed in Section 2 we obtain the equations of the single-mode approxi- 
mation (a Duffing type vector equation) 

sl  + Z l S l  = - ~ ' l s l 2 s l  - £ O ' l S l  + £ f t ( f ~ t )  (f! = f* c o s ~ t ) ,  u(i  ) = XIS ! 

,h= Xf4(x)r(x)dx, ~,=JXt(x)x(x)dx, f,(fu)-IX~(x)re(x,t)ax 
2 0  0 0 

(7.3) 

Small-parameter methods [4--6, 8] are applicable to the quasi-linear oscillatory system (7.3). Free 
vibration (fl -- 0) and forced vibration (in the e-neighbourhood of the principal resonance f~ = vl), 
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ignoring dissipation (al = 0), have been investigated in detail in [10, 13]. Resonance curves for the steady- 
state oscillations were constructed and analysed; the Lyapunov stability was investigated in the extremely 
interesting ease where the external excitation only acts in one of the planes, while the vibration in the 
other plane has a parametric form. 

For an adequate interpretation of the results of experiments [13] it is necessary to take dissipation 
into account, for example, using model (7.3) with <~1 > 0. The corresponding resonance curves can be 
reduced, by scale transformations, to a single-parameter family [14]. It is convenient to take ~t as the 
parameter of the family, while the parameters ~,1 = ~'t = f~ = 1,fz* = 0. Typical curves of the amplitudes 

0 0 of plane vibration Ay(A z-- 0) and three-dimensional vibrationZy and Az as a function of the frequency- 
detuning parameter la = (f2 - 1)6 -t > 0 are shown in Figs 1 and 2 for al = 0.25 and cl = 0.4; they have 
an exotic form. Note that Az > 0 over a certain range of variation of/a > 0, which depends on ~1. 
For fairly large values of ot > 3t/24 -5/6 = 0.546, steady vibration in the xz plane is impossible [14]. Note 
that if internal dissipation of the type H(x)u" is taken into account the same results are obtained; then 
~1 is the total coefficient of linear dissipation with respect to the first mode. 

We wish to thank G. V. Kostin for help in drawing the graphs. 
This research was supported financially by the Russian Foundation for Basic Research (96-01-00221 

and 96-01-00265). 
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